51 research outputs found

    Performance Bounds for Bi-Directional Coded Cooperation Protocols

    Get PDF
    In coded bi-directional cooperation, two nodes wish to exchange messages over a shared half-duplex channel with the help of a relay. In this paper, we derive performance bounds for this problem for each of three protocols. The first protocol is a two phase protocol were both users simultaneously transmit during the first phase and the relay alone transmits during the second. In this protocol, our bounds are tight and a multiple-access channel transmission from the two users to the relay followed by a coded broadcast-type transmission from the relay to the users achieves all points in the two-phase capacity region. The second protocol considers sequential transmissions from the two users followed by a transmission from the relay while the third protocol is a hybrid of the first two protocols and has four phases. In the latter two protocols the inner and outer bounds are not identical, and differ in a manner similar to the inner and outer bounds of Cover's relay channel. Numerical evaluation shows that at least in some cases of interest our bounds do not differ significantly. Finally, in the Gaussian case with path loss, we derive achievable rates and compare the relative merits of each protocol in various regimes. This case is of interest in cellular systems. Surprisingly, we find that in some cases, the achievable rate region of the four phase protocol sometimes contains points that are outside the outer bounds of the other protocols.Comment: 15 page

    On bounds and algorithms for frequency synchronization for collaborative communication systems

    Full text link
    Cooperative diversity systems are wireless communication systems designed to exploit cooperation among users to mitigate the effects of multipath fading. In fairly general conditions, it has been shown that these systems can achieve the diversity order of an equivalent MISO channel and, if the node geometry permits, virtually the same outage probability can be achieved as that of the equivalent MISO channel for a wide range of applicable SNR. However, much of the prior analysis has been performed under the assumption of perfect timing and frequency offset synchronization. In this paper, we derive the estimation bounds and associated maximum likelihood estimators for frequency offset estimation in a cooperative communication system. We show the benefit of adaptively tuning the frequency of the relay node in order to reduce estimation error at the destination. We also derive an efficient estimation algorithm, based on the correlation sequence of the data, which has mean squared error close to the Cramer-Rao Bound.Comment: Submitted to IEEE Transaction on Signal Processin

    Collaborative Beamforming for Distributed Wireless Ad Hoc Sensor Networks

    Full text link
    The performance of collaborative beamforming is analyzed using the theory of random arrays. The statistical average and distribution of the beampattern of randomly generated phased arrays is derived in the framework of wireless ad hoc sensor networks. Each sensor node is assumed to have a single isotropic antenna and nodes in the cluster collaboratively transmit the signal such that the signal in the target direction is coherently added in the far- eld region. It is shown that with N sensor nodes uniformly distributed over a disk, the directivity can approach N, provided that the nodes are located sparsely enough. The distribution of the maximum sidelobe peak is also studied. With the application to ad hoc networks in mind, two scenarios, closed-loop and open-loop, are considered. Associated with these scenarios, the effects of phase jitter and location estimation errors on the average beampattern are also analyzed.Comment: To appear in the IEEE Transactions on Signal Processin
    • …
    corecore